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1 Introduction

There is a large literature on estimating average treatment effects under assumptions of uncon-
foundedness or ignorability following the seminal work by Rubin (1973, 1978) and Rosenbaum
and Rubin (1983a). Researchers have developed estimators based on regression methods (e.g.,
Hahn, 1998, Heckman, Ichimura and Todd, 1998), matching (e.g., Rosenbaum, 1989, Abadie
and Imbens, 2004), and methods based on the propensity score (e.g., Rosenbaum and Rubin,
1983a, Hirano, Imbens and Ridder, 2003). Related methods for missing data problems are dis-
cussed in Robins, Rotnitzky and Zhao (1995) and Robins and Rotnitzky (1995).1 In practice
an important concern in implementing all these methods is that one needs sufficient overlap be-
tween covariate distributions in the two subpopulations. Even if there exist areas with sufficient
overlap, there may be other parts of the covariate space with few units of one of the treatment
levels. Such areas of limited overlap can lead to estimators for average treatment effects with
poor finite sample properties. In particular, such estimators can have substantial bias, large
variances, as well as considerable sensitivity to the exact specification of the regression functions
or propensity score. Heckman, Ichimura and Todd (1997) and Dehejia and Wahba (1999) point
out the empirical relevance of this overlap issue.2

One strand of the literature has focused on assessing the robustness of existing estimators
to a variety of potential problems including lack of overlap. See, for example, Rosenbaum and
Rubin (1983b), Imbens (2003), and Ichino, Mealli, and Nannicini (2005). A second strand of
the literature focuses on developing new estimators that are more robust and precise. With
this goal in mind researchers have proposed discarding or downweighting observations with
covariates in areas with limited overlap. A number of specific methods have been proposed for
implementing this. In simplest setting, with a discrete covariate, Rubin (1977)and Lee (2005b)
suggest simply discarding all units with covariate values with either no treated or no control
units. Rubin and Cochran (1973) suggest caliper matching where potential matches are dropped
if the within-match difference in propensity scores exceeds some threshold level. Dehejia and
Wahba (1999) focus on the average treatment effect for the treated and suggest discarding
all controls with estimated propensity scores below the smallest value of the propensity score
among the treated. Heckman, Ichimura, Smith and Todd (1997) and Heckman, Ichimura and
Todd (1998) drop units from the analysis if the estimated density of the covariate distribution
conditional on treatment status is below some threshold. Ho, Imai, King and Stuart (2004)
propose preprocessing the data by matching units and carrying out parametric inferences using
only the matched data.

All of these methods for dealing with limited overlap in the covariates of the two treatment
subpopulations have some advantages as well as some drawbacks. For our purposes, we note
that all of these methods involve changing the estimand, at least in finite samples. While the

1See Rosenbaum (2001), Heckman, Lalonde and Smith (1999), Wooldridge (2002), Blundell and Costa-Diaz
(2002), Imbens (2004) and Lee (2005a) for surveys of this literature.

2Dehejia and Wahba (1999) write: “... our methods succeed for a transparent reason: They only use the subset
of the comparison group that is comparable to the treatment group, and discard the complement.” Heckman,
Ichimura and Todd (1997) write “A major finding of this paper is that comparing the incomparable – i.e.,
violating the common support condition for the matching variables – is a major sources of evaluation bias as
conventionally measured.”
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resulting estimators do tend to reduce sensitivity of the final estimates to model specification,
they rely on arbitrary choices regarding thresholds for discarding observations, i.e., on exactly
how the estimand is changed. Furthermore, there are few formal results on their properties.

In this paper, we propose a systematic approach to dealing with subpopulations for which
there is limited overlap in the covariates. Our approach has asymptotic optimality properties
under some conditions and is straightforward to implement. We consider two specific methods.
First, we focus on average treatment effects within a selected subpopulation defined in terms
of covariate values. Conditioning on a subpopulation reduces the effective sample size, thus in-
creasing the variance of the estimated average treatment effect. However, if the subpopulation
is chosen appropriately, it may be possible to estimate the average treatment within this sub-
population more precisely than the average effect for the entire population despite the smaller
sample size. It turns out that in general this tradeoff is well defined and, under some condi-
tions, leads to choosing the observations for the subpopulation that has propensity scores in an
interval [α, 1− α], where the optimal cutoff value of α solely determined by the distribution of
the propensity score. We refer to this as the Optimal Subpopulation Average Treatment Effect
(OSATE).

Second, we consider weighted average treatment effects with the weights depending only on
the covariates. The first approach of choosing a subpopulation can be viewed as a special case
in this framework where the weight function is restricted to be an indicator function. Without
imposing this restriction we characterize the weight function that leads to the most precisely
estimated average treatment effect. Note that this class of estimands with weights depending on
the covariates includes the average treatment effect for the treated where the weight function is
proportional to the propensity score. Under the same conditions as before, the optimal weight
function will again be a function of the propensity score alone, proportional to the product of
the propensity score and one minus the propensity score. We refer to this as the Optimally
Weighted Average Treatment Effect (OWATE).

The switch to average treatment effect for an optimally selected subpopulation or to a opti-
mally weighted average treatment effect has a second benefit beyond the increase in precision.
The subpopulations for treated and control group in this selected or weighted population tend
to be more balanced in the distribution of the covariates. This is a consequence of the fact that,
under homoskedasticity, the variance of the conditional average treatment effect is proportional
to (e(X) · (1 − e(X)))−1. Thus, lowering the weight on high-variance observations increases
the weight on observations with propensity scores close to 1/2. The increased balance in the
selected or weighted sample reduces the sensitivity of any estimators to changes in the specifi-
cation. In the extreme case, where the selected sample is completely balanced in covariates in
the two treatment arms, one can simply use the average difference in outcomes between treated
and control units.

As is the case with some of the methods for estimating treatment effects noted above, the
methods we propose change the estimand relative to the one (or ones) of original focus. This is
somewhat uncommon in econometric analyses.3 Typically, the estimand is defined, a priori, as

3One exception is the local average treatment effect introduced by Imbens and Angrist (1994), which is the
average effect of the treatment for the subpopulation of compliers.
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is the case with the population average treatment effect, the average effect for the subpopulation
of the treated or another a priori defined subpopulation of interest. In these cases, estimates
are produced that turn out to be more or less precise, depending on the actual data. In cases
where even large data sets would not permit point identification of the estimand, regions of the
parameter space consistent with the model may be reported in a bounds analysis of the type
developed by Manski (1990, 2003).

In this paper, we focus on average effects for a statistically defined (weighted) subpopula-
tion.4 This change of focus is not motivated, per se, by an intrinsic interest in the subpopulation
for which we ultimately estimate the average causal effect. Rather, it acknowledges and ad-
dresses the difficulties in making inferences about the population of primary interest. This
approach has several potential justifications. First, it focuses on achieving precise estimates.
By changing the sample from one that was potentially representative of the population of in-
terest, we can gain greater internal validity, although, in doing so, we may sacrifice some of
the external validity of the resulting estimates.5 Our proposed approach of placing greater
stress on internal versus external validity is similar to that found in the design of randomized
experiments which are carried out on populations unrepresentative of the population of interest
in order to improve the precision of the inferences to be drawn.6 More generally, the primacy
of internal validity over external validity is advocated in many discussions of causal inference
(see, for example, Shadish, Cook, and Campbell, 2002).

Second, our approach is well-suited to situations where the primary interest is to determine
whether a treatment may harm or benefit some group in a broader population. For example,
one may be interested whether there is any evidence that a particular drug could harm or have
side effects for some group of patients in a well-defined population. In this context, obtaining
greater precision in the estimation of a treatment effect, even if it is not for the entire population,
is warranted. We note that the subpopulation for which these estimands are valid are defined in
terms of the observed covariate values so that one can determine, for each individual, whether
they are in the relevant subpopulation or not.

Third, our approach can provide useful, albeit auxiliary, information when making inferences
about the treatment effects for fixed populations. Thus, instead of only reporting the potentially
imprecise estimate for the population average treatment effect, one can also report the estimates
for the subpopulations where we can make more precise inferences.

In interpreting our results, it also is of interest to consider the estimation of the average
treatment effect under the assumption that it does not vary with the covariates.7 This assump-
tion can be quite informative except in the case where the propensity score is constant. Under
the assumption that the treatment effect does not vary with covariates, the model is a special
case of the partial linear model studied by Robinson (1988), Stock (1989) and Robins, Mark

4This is also true for the method proposed by Heckman, Ichimura and Todd, (1998).
5A separate issue is that in practice in many cases even the original sample is not representative of the

population of interest. For example, we are often interested in policies that would extend small pilot versions of
job training programs to different locations and times.

6Even in those settings this can be controversial and lead to misleading conclusions.
7The possible presence of heterogeneity of the treatment effect is an important consideration in much of this

literature. See for applications Dehejia and Wahba (1999), Lechner (2002) and others.
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and Newey (1992).8 As we discuss below, the efficient estimator for that case turns out to be
identical to the efficient estimator in the heterogeneous case for the weighted average treatment
effect with the weights chosen to obtain the most precisely estimated average treatment effect.
In Crump, Hotz, Imbens and Mitnik (2005), we exploit this fact to develop non-parametric tests
of treatment effect heterogeneity with respect to covariates that characterize subpopulations of
a population of interest.

Finally, it is important to note that our calculations are not tied to a specific estimator.
The results formally refer to differences in the efficiency bound for different subpopulations.
As a consequence, they are relevant for all efficient estimators, including the ones proposed by
Hahn (1998), Hirano, Imbens and Ridder (2003), Imbens, Newey and Ridder (2004), Robins,
Rotnitzky and Zhao (1995). Although not directly applicable to estimators that do not reach
the efficiency bound, such as the nearest neighbor matching estimators in Abadie and Imbens
(2002) and the local linear estimators in Heckman, Ichimura and Todd (1998), the close relation
between those estimators and the efficient ones suggests that with matching the same issues
are relevant.

We illustrate these methods, using data from the non-experimental part of a data set on
labor market programs previously used by Lalonde (1986), Dehejia and Wahba (1999), Smith
and Todd (2005) and others. In this data set, the overlap issue is a well known problem, with
the control and treatment group far apart on some of the most important covariates including
lagged values for the outcome of interest, yearly earnings. Here the optimal subpopulation
method suggests dropping 2363 out of 2675 observations (leaving only 312 observations, or 12%
of the original sample) in order to minimize the variance. Calculations suggest that this lowers
the variance by a factor 1/160000, reflecting the fact that most of the controls are so different
from the treated that it is essentially impossible to estimate the population average treatment
effect. More relevant is that the variance for the optimal subsample is only 40% of that for
the propensity score weighted sample, which estimates the average effect on the treated. Such
potential gains in precision of an estimated treatment effect have gone largely unnoticed because
most of the researchers analyzing this data set have focused almost exclusively on the average
treatment effect for the treated,

The remainder of the paper is organized as follows. In section 2, we present a simple
example in which there is a single and scalar covariate is used in the estimation of the average
treatment effect. This example allows us to illustrate how the precision of the estimates varies
with changes in the estimand. Section 3 characterizes the general set up we use throughout
the paper, section 4 reviews existing results for the efficient estimation of treatment effects
and section 5 reviews the previous approaches to dealing with limited overlap when estimating
treatment effects. In section 6, we define and characterize the properties of the OSATE and
OWATE estimators. In section 7, we present the application to the Lalonde data.

8Stock (1989) also focuses on estimating the effect of a policy intervention, but he formulates the problem
differently. In his approach the intervention does not change the relationship between the covariates and the
outcome. Instead it changes the distribution of the covariates in a known manner. The estimand is then the
difference between the average value of the regression function given the induced distribution of the covariates
and the average value of the regression function given the current distribution of the covariates.
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2 A Simple Example

To set the stage for the issues to be discussed in this paper, consider an example with a scalar
covariate X taking on two values, 0 and 1. Let Nx be the sample size for the subsample with
X = x, and let N = N0 +N1 be the total sample size. Also let p = N1/N be the population
share of X = 1 units. Let the average treatment effect conditional on the covariate be equal to
τx. The population average treatment effect is then τ = p·τ1+(1−p)·τ0. Let Nxw be the number
of observations with covariate Xi = x and treatment indicator Wi = w. Also, let ex = Nx1/Nx

be the propensity score for x = 0, 1. Finally, let ȳxw =
∑N

i=1 Yi · 1{Xi = x,Wi = w}/Nxw be
the average within each of the four subpopulations. Assume that the variance of Y (w) given
Xi = x is σ2 for all x.

The natural estimator for the treatment effects for each of the two subpopulations are

τ̂0 = ȳ01 − ȳ00, and τ̂1 = ȳ11 − ȳ10,

with variances

V (τ̂0) = σ2 ·
(

1
N00

+
1
N01

)
=

σ2

N · (1− p)
· 1
e0 · (1− e0)

,

and

V (τ̂1) = σ2 ·
(

1
N10

+
1
N11

)
=

σ2

N · p · 1
e1 · (1− e1)

.

The estimator for the population average treatment effect is

τ̂ = p · τ̂1 + (1− p) · τ̂0.

Because the two estimates τ̂0 and τ̂1 are independent, the variance of the population average
treatment effect is

V (τ̂) = p2 · V (τ̂1) + (1 − p)2 · V (τ̂0)

=
σ2

N
·
(

p

e1 · (1 − e1)
+

1 − p

e0 · (1 − e0)

)
=
σ2

N
· E
[

1
eX · (1 − eX)

]
.

The first point of the paper concerns the comparison of V (τ̂), V (τ̂0), and V (τ̂1)). Define
Vmin = min(V (τ̂), V (τ̂0), V (τ̂1). Then

Vmin =





V (τ̂0) if (e1(1− e1))/(e0(1 − e0)) ≤ (1 − p)/(2− p),
V (τ̂) if (1 − p)/(2− p) ≤ (e1(1− e1))/(e0(1 − e0)) ≤ (1 + p)/p,
V (τ̂1) if (1 + p)/p ≤ (e1(1 − e1))/(e0(1− e0)).

(2.1)

Which estimator has the smallest variance depends on the relative sizes of the two subsamples,
p, and the ratio of the product of the propensity score and one minus the propensity score,
e1(1− e1)/(e0(1− e0)). If the propensity score for units with X = 0 is close to zero or one, we
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cannot estimate the average treatment effect for this subpopulation precisely. In that case, the
ratio e1(1− e1)/(e0(1− e0)) will be high and we may be able to estimate the average treatment
effect for the X = x1 subpopulation more accurately than for the population as a whole, even
though we may lose a substantial number of observations by discarding units with Xi = 0.
Similarly, if the propensity score for the X = 1 subpopulation is close to zero or one, the ratio
e1(1 − e1)/(e0(1− e0)) is close to zero, and we may be able to estimate the average treatment
effect for the X = x0 subpopulation more accurately than for the population as a whole. If
the ratio is close to one, we can estimate the average effect for the population as a whole more
accurately than for either of the two subpopulations.

The second advantage of focusing on subpopulation average treatment effects is in this case
obvious. Within the two subpopulations we can estimate the within-subpopulation average
treatment effect without bias by simply differencing average treatment and control outcomes.
Thus our results are not sensitive to the choice of estimator, whereas in the population as a
whole there is potentially substantial bias from simply differencing average outcomes.

The second point is that one need not limit the choice to the three average treatment effects
discussed so far. More generally, one may wish to focus on a weighted average treatment effect

τλ = λ · τ1 + (1− λ) · τ0,

for fixed λ, which can be estimated as

τ̂λ = λ · τ̂1 + (1− λ) · τ̂0,

The variance for this weighted average treatment effect is

V (τ̂λ) = λ2 · V (τ̂1) + (1 − λ)2 · V (τ̂0)

= λ2 · σ2

N · p · 1
e1 · (1− e1)

+ (1 − λ)2 · σ2

N · (1− p)
· 1
e0 · (1− e0)

.

The variance is minimized at

λ∗ =
1/V (τ̂1)

1/V (τ̂1) + 1/V (τ̂0)
=

p · e1 · (1 − e1)
(1 − p) · e0 · (1 − e0) + p · e1 · (1− e1)

. (2.2)

with the minimum value for the variance equal to

V (τλ∗) =
σ2

N
· 1
((1 − p) · e0 · (1 − e0) + p · e1 · (1− e1))

=
σ2

N
· 1
E[eX · (1 − eX)]

.

The ratio of the variance for the population average to the variance for the optimally weighted
average treatment effect is

V (τP )/V (τλ∗) = E
[

1
eX · (1− eX)

]/
1

E[eX · (1− eX)]
(2.3)

= E
[

1
V (eX)

]/
1

E[V (eX)]
.
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By Jensen’s inequality this is greater than one if V (eX) > 0, that is, if the propensity score
varies across the population.

In summary, suppose in this case one is interested in the population average treatment
effect τ . One may find that the efficient estimator is imprecise. This is consistent with two
different states of the world. In one state the average effect for both of the subpopulations
are also imprecisely estimated, and in effect one cannot say much about the effect of the
treatment at all. In the other state of the world it is still possible to learn something about
the effect of the treatment because one of the subpopulation average treatment effects can be
estimated precisely. In that case – which corresponds to the propensity score for one of the two
subpopulations being close to zero or one – one also may wish to report the estimator for the
precisely estimable average treatment effect to convey the information that the data contain
about the effect of the treatment. It is important to stress that the message of the paper is
not that one should report τ̂m or τ̂f instead of τ̂ . Rather, in cases where τ̂m or τ̂f are precisely
estimable and τ̂ is not, one should report both.

Below, we generalize this analysis to the case with a vector of potentially continuously dis-
tributed covariates. We study the existence and characterization of a partition of the covariates
space into two subsets. For one of the subpopulations, the average treatment effect is at least
as accurately estimable as that for any other subset of the covariate space. This leads to a
generalization of (2.1). Under some assumptions, this problem has a well-defined solution and
these subpopulations have a very simple characterization, namely a set of values of the covari-
ates for which the propensity score is in the closed interval [α, 1−α]. The optimal value of the
boundary point α is determined by the distribution of the propensity score and its calculation
is straightforward. In addition, we characterize the optimally weighted average treatment effect
and its variance, which generalizes (2.2) and (2.3).

3 Set Up

The basic framework is standard in this literature (e.g., Rosenbaum and Rubin, 1983; Hahn,
1998; Heckman, Ichimura and Todd, 1998; Hirano, Imbens and Ridder, 2003). We have a
random sample of size N from a large population. For each unit i in the sample, let Wi indicate
whether the treatment of interest was received, with Wi = 1 if unit i receives the treatment
of interest, and Wi = 0 if unit i receives the control treatment. Using the potential outcome
notation popularized by Rubin (1974), let Yi(0) denote the outcome for unit i under control
and Yi(1) the outcome under treatment. We observe Wi and Yi, where

Yi ≡ Yi(Wi) = Wi · Yi(1) + (1−Wi) · Yi(0).

In addition, we observe a vector of pre-treatment variables, or covariates, denoted by Xi.
Define the two conditional means, µw(x) = E[Y (w)|X = x], the two conditional variances,
σ2

w(x) = Var(Y (w)|X = x), the conditional average treatment effect τ(x) = E[Y (1)−Y (0)|X =
x] = µ1(x) − µ0(x), and the propensity score, the probability of selection into the e(x) =
Pr(W = 1|X = x) = E[W |X = x].

[7]



Initially we focus on two average treatment effects. The first is the (super-)population
average treatment effect

τP ≡ E[Y (1) − Y (0)].

We also consider the conditional average treatment effect:

τC =
1
N

N∑

i=1

τ(Xi),

where we condition on the observed set of covariates. The reason for focusing on the second
one is twofold. First, it is analogous to the common conditioning on covariates in regression
analysis. Second, it can be estimated more precisely if there is indeed variation in the treatment
effect by covariates.

To solve the identification problem, we maintain throughout the paper the unconfoundedness
assumption (Rubin, 1978; Rosenbaum and Rubin, 1983), which asserts that conditional on
the pre-treatment variables, the treatment indicator is independent of the potential outcomes.
Formally:

Assumption 3.1 (Unconfoundedness)

W ⊥ (Y (0), Y (1))
∣∣∣∣ X. (3.4)

In addition we assume there is overlap in the covariate distributions:

Assumption 3.2 (Overlap)

For some c > 0,

c ≤ e(x) ≤ 1− c.

For estimation, we often need smoothness conditions on the two regression functions µw(x) and
the propensity score e(x).

4 Efficiency Bounds

Next, we review some results for efficient estimation of treatment effects. First we discuss
efficient estimators previously developed by Hahn (1998) and Hirano, Imbens and Ridder (2003)
for treatment effects allowing for heterogeneity in the treatment effects. Second, we present
some results for efficient estimation of treatment effects under a variety of assumptions that
restrict the heterogeneity of the treatment effects. This setting is closely related to the partial
linear model developed by Robinson (1988).

Hahn (1998) calculates the efficiency bound for τP .

[8]



Theorem 4.1 (Hahn, 1998) Suppose Assumptions 3.1 and 3.2 hold. Then the semiparametric
efficiency bounds for τ is

V eff
P = E

[
(τ(X)− τ)2 +

σ2
1(X)
e(X)

+
σ2

0(X)
1 − e(X)

]
. (4.5)

Proof: See Hahn (1998).
Robins, Rotznitzky and Zhao (1995) present a similar result in a missing data setting.
Hahn (1998) also proposes an estimator that achieves the efficiency bound.9 Hahn’s esti-

mator is asymptotically linear,

τ̂H =
1
N

N∑

i=1

ψ(Yi,Wi, Xi) + op

(
N−1/2

)
,

where

ψ(y, w, x) = w · y − µ1(x)
e(x)

− (1 − w) · y − µ0(x)
1 − e(x)

+ µ1(x) − µ0(x) − τ.

One implication of this representation is that we can view Hahn’s estimator – as well as the
other efficient estimators – not only as an estimator of the population average treatment effect,
τP , but also as an estimator of the conditional average treatment effect τC . As an estimator of
τC , the efficient estimator τ̂H has asymptotic variance

E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

]
. (4.6)

Furthermore, these estimators are efficient for τC :

Theorem 4.2 (Efficiency Bound for τC) Suppose Assumptions 3.1 and 3.2 hold. Then
the semiparametric efficiency bounds for τC is

V eff
C = E

[
σ2

1(X)
e(X)

+
σ2

0(X)
1− e(X)

]
. (4.7)

Proof: See Appendix.
Next we consider a larger set of estimands. Instead of looking at the average treatment

effect within a subpopulation we consider weighted average treatment effects of the form

τP,g = E[τ(X) · g(X)]/E[g(X)],

for nonnegative functions g(·). For estimands of this type the efficiency bound is given in the
following theorem:

9Other efficient estimators have been proposed by Hirano, Imbens and Ridder (2003) and Imbens, Newey and
Ridder (2004).
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Theorem 4.3 (Hirano, Imbens and Ridder, 2003) Suppose Assumptions 3.1 and 3.2 hold,
and suppose that g(·) is known. Then the semiparametric efficiency bounds for τg is

V eff
P,g =

1
E[g(X)]2

·E
[
g(X)2 ·

(
σ2

1(X)
e(X)

+
σ2

0(X)
1− e(X)

+ (τ(X)− τg)
2

)]

Proof: See Hirano, Imbens and Ridder (2003).
Again there is an asymptotically linear estimator that achieves this efficiency bound. The

same argument as above therefore establishes that the efficient estimator for τP,g, as an estimator
for the conditional average treatment effect version of this estimand,

τC,g =
N∑

i=1

τ(Xi) · g(Xi)
/ N∑

i=1

g(Xi),

has asymptotic variance

V eff
C,g =

1
E[g(X)]2

· E
[
g(X)2

e(X)
σ2

1(X) +
g(X)2

1 − e(X)
σ2

0(X)
]
. (4.8)

Next we consider the case where the weights depend on the propensity score: g(x) = h(e(x)).
This will be useful later when some estimands of interest have this form. If the propensity score
is known this is a special case of the previous result, but if the propensity score is unknown the
efficiency bound changes.

Theorem 4.4 (Weighted Average Treatment Effects with Weights Depending on

the Propensity Score) Suppose Assumptions 3.1 and 3.2 hold, and suppose that the weights
are a function of the propensity score: g(x) = h(e(x)) with h(·) known and e(x) unknown. Then
the semiparametric efficiency bounds for τg is

V eff
P,g =

1
E[g(X)]2

·E
[
g(X)2 ·

(
σ2

1(X)
e(X)

+
σ2

0(X)
1− e(X)

+ (τ(X)− τg)
2

)]

+
1

E[g(X)]2
· E
[
e(X)(1− e(X)) · [h′(e(X))]2(τ(X)− τg)2

]
,

where h′(a) is the first derivative of h(a).

Proof: See Appendix.
A special case of this arises when h(a) = a so that the weights are proportional to the

propensity score. In that case, the estimand is the average effect for the treated. The efficiency
bound for this case under the unknown propensity score was previously derived by Hahn (1998,
Theorem 1). It is equal to

V eff
P,t =

1
E[e(X)]2

· E
[
e(X)2 ·

(
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

)
+ e(X) · (τ(X)− τt)2

]
.

Finally, we consider the case where we know that the average treatment effect does not vary
by covariates.
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Assumption 4.1 (Constant Conditional Average Treatment Effect)

For all x, µ1(x)− µ0(x) = τ .

This assumption is slightly weaker than assuming a constant treatment effect. Under this
assumption the efficiency bound is a generalization of the bound given in Robins, Mark and
Newey (1992) to the heteroskedastic case:

Theorem 4.5 (Robins, Mark and Newey, 1992) Suppose Assumptions 3.1, 3.2, and 4.1
hold. Then the semiparametric efficiency bounds for τ is

V eff
cons =

(
E

[(
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

)−1
])−1

. (4.9)

Proof: See Robins, Mark and Newey (1992).
It is interesting to compare the efficiency bound for τ under the constant average treatment

effect assumption given in (4.9) with the efficiency bound for the average conditional treatment
effect τC given in (4.6). By Jensen’s inequality the former is smaller, unless σ2

1(x)/e(x) +
σ2

0(x)/(1− e(x)) is constant. Under homoskedasticity the ratio of the variances V eff
C and V eff

cons

reduces to

E
[

1
V (W |X)

]/
1

E[V (W |X)]
,

the same expression we obtained in the binary covariate case. This ratio is greater than one
unless the propensity score is constant. If the propensity score takes on values close to zero
or one this ratio can be large. The implication is that knowledge of the treatment effect being
constant as a function of the covariates can be very valuable.

5 Previous Approaches to Dealing with Limited Overlap

In empirical application, there is often concern about the overlap assumption (e.g., Dehejia and
Wahba, 1999; Heckman, Ichimura, and Todd, 1997). To ensure that there is sufficient overlap
researchers have sometimes trimmed their sample by excluding observations with propensity
scores close to zero or one. Cochran and Rubin (1977) suggest caliper matching where units
whose match quality is too low according to the distance in terms of the propensity score are
left unmatched.

Dehejia and Wahba (1999) focus on the average effect for the treated, They suggest dropping
all control units with an estimated propensity score lower than the smallest value, or larger than
the largest value, for the estimated propensity score among the treated units. Formally, they
first estimate the propensity score. Let the estimated propensity score for unit i be ê(Xi). Then
let ē1 be the minimum of the ê(Xi) among treated units and let e1 be the maximum of the
ê(Xi) among treated units. DW then drop all control units such that ê(Xi) < ē1 or ê(Xi) > e1.

Heckman, Ichimura and Todd (1997) and Heckman, Ichimura, Smith and Todd (1998)
also focus on the average effect for the treated. They propose discarding units with covariate
values at which the estimated density is below some threshold. The precise method is as

[11]



follows.10 First they estimate the propensity score ê(x). Next, they estimate the density of the
estimated propensity score in both treatment arms. Let f̂w(e) denote the estimated density of
the estimated propensity score. The specific estimator they use is a kernel estimator

f̂w(e) =
1

Nw · h
∑

i|Wi=w

K

(
ê(Xi) − e

h

)
,

with bandwidth h.11 First HIT discard observations with f̂0(ê(Xi)) or f̂1(ê(Xi)) exactly equal
to zero leaving J observations. Observations with the estimated denstiy equal to zero may exist
when the kernel has finite support. Smith and Todd, for example, use a quadratic kernel with
K(u) = (u2 − 1)2 for |u| ≤ 1 and zero elsewhere. Next, they fix a quantile q (Smith and Todd
use q = 0.02). Among the J observations with positive densities they rank the 2J values of
f̂0(ê(Xi)) and f̂1(ê(Xi)). They then drop units i with f̂0(ê(Xi)) or f̂1(ê(Xi)) less than or equal
to cq, where cq is the largest real number such that

1
2J

J∑

i=1

(
1{f̂0(ê(Xi)) < cq} + 1{f̂1(ê(Xi)) < cq}

)
≤ q.

Ho, Imai, King and Stuart (2004) propose combining any specific parametric procedure
that the researcher may wish to employ with a nonparametric first stage in which the units
are matched to the closest unit of the opposite treatment. This typically leads to a data set
that is much more balanced in terms of covariate distributions between treated and control. It
therefore thus reduces sensitivity of the parametric model to specific modeling decisions such
as the inclusion of covariates or functional form assumptions.

King et al (2005): convex hull.
All these methods tend to make the estimators more robust to specification decisions. How-

ever, few formal results are available on the properties of these procedures.

6 Alternative Estimands

6.1 The Optimal Subpopulation Average Treatment Effect

First we consider trimming the sample by excluding units with covariates outside of a set A,
where A ⊂ X, with X ⊂ Rk the covariate space. For a given set A we define a corresponding
average treatment effect τC(A):

τC(A) =
∫

A
τ(x)f(x)dx.

The efficiency bound for this parameter is

V eff
C (A) = E

[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

∣∣∣∣X ∈ A
]
.

10See Heckman, Ichimura and Todd (1997) and Smith and Todd (2005) for details, and Ham, Li and Reagan
(2005) for an application of this method.

11In their application Smith and Todd (2005) use Silverman’s rule of thumb to choose the bandwidth.
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Because the relative size of the subpopulation in A is q(A) = Pr(X ∈ A), the efficiency bound
normalized by the original sample size is

V eff′
C (A) =

1
q(A)

· E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

∣∣∣∣X ∈ A
]
. (6.10)

We look for an optimal A, denoted by A∗, that minimizes the asymptotic variance (6.10) among
all subsets A.

There are two competing effects. First, by excluding units with covariate values outside
the set A one reduces the effective sample size from N to N · q(A). This will increase the
asymptotic variance, normalized by the original sample size, by a factor 1/q(A). Second, by
discarding units with high values for σ2

1(X)/e(X) + σ2
0(X)/(1 − e(X)) (that is, units with

covariate values such that it is difficult to estimate the average treatment effect) one can lower
the conditional expectation E[σ2

1(X)/e(X) + σ2
0(X)/(1 − e(X))|X ∈ A]. Optimally choosing

A involves balancing these two effects. The following theorem gives the formal result for the
optimal A∗ that minimizes the asymptotic variance.

Theorem 6.1 (OSATE)

Let f ≤ f(x) ≤ f , and σ2(x) ≤ σ2 for w = 0, 1 and all x ∈ X. We consider sets A ⊂ X that are
elements of the sigma algebra of Borel subsets of Rk. Then the Optimal Subpopulation Average
Treatment Effect (OSATE) is τC(A∗), where, if

sup
x∈X

σ2
1(x) · (1− e(x)) + σ2

0(x) · e(x)
e(x) · (1 − e(x))

≤ 2 ·E
[
σ2

1(X) · (1 − e(X)) + σ2
0(X) · e(X)

e(X) · (1− e(X))

]
,

then A∗ = X and otherwise,

A∗ =
{
x ∈ X

∣∣∣∣
σ2

1(x) · (1 − e(x)) + σ2
0(x) · e(x)

e(x) · (1 − e(x))
≤ a

}
,

where a is a positive solution to

a = 2 ·E
[
σ2

1(X) · (1− e(X)) + σ2
0(X) · e(X)

e(X) · (1− e(X))

∣∣∣∣
σ2

1(X) · (1− e(X)) + σ2
0(X) · e(X)

e(X) · (1− e(X))
< a

]
.

Proof: See Appendix.
The result in this theorem simplifies under homoskedasticity.

Corollary 6.1 Optimal Overlap Under Homoskedasticity Suppose that σ2
w(x) = σ2 for

all w ∈ {0, 1} and x ∈ X. If

sup
x∈X

1
e(x) · (1 − e(x))

≤ 2 · E
[

1
e(X) · (1 − e(X))

]
,

then A∗ = X. Otherwise,

A∗ =
{
x ∈ X

∣∣∣∣
1

e(x) · (1 − e(x))
≤ a

}
,

where a is a solution to

a = 2 ·E
[

1
e(X) · (1− e(X))

∣∣∣∣
1

e(X) · (1 − e(X))
< a

]
.
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We can find the smallest value of a that satisfies the first order conditions – and which
therefore must correspond to a local minimum for g(a) – by iteratively solving equation (??).
Start with α0 = 0. Calculate

γk = γ(αk) = E[(e · (1− e))−1|αk ≤ e ≤ 1 − αk].

Note that γk > 4. Then solve αk by solving for the solution in (0, 1/2) of

1
αk+1 · (1 − αk+1)

= 2 · γk,

leading to

αk+1 =
1
2
−
√

1
4
− 1

2 · γk
.

In an application we would typically not know the propensity score. In that case, we would
carry out the calculations with the conditional expectation E[(e · (1 − e))−1|α ≤ e ≤ 1 − α]
replaced by

N∑

i=1

1
e(Xi) · (1 − e(Xi))

· 1{α ≤ e(Xi) ≤ 1 − α}
/ N∑

i=1

1{α ≤ e(Xi) ≤ 1 − α}.

Estimating the optimal value of α is not particularly difficult. However, it is also unlikely
that the variance is very sensitive to the exact cutoff point. It may therefore be sufficient to
approximate the optimal α. If the marginal distribution of the propensity score is uniform on
the unit interval we can numerically calculate the exact value for the optimal α. This turns
out to be 0.1018, suggesting that using the interval [0.1018, 0.8982] would give a asymptotic
variance close to optimal.

6.2 The Optimally Weighted Average Treatment Effect

In this section, we consider weighted average treatment effects of the form

τg =
∫

x
g(x) · τ(x)dF (x)

/∫

x
g(x)dF (x).

The following theorem gives the most precisely estimable weighte average treatment effect.

Theorem 6.2 (OWATE)

Suppose Assumptions – hold. Then the Optimal Weighted Average Treatment Effect (OWATE)
is τg∗, where

g∗(x) =
(
σ2

1(x)
e(x)

+
σ2

0(x)
1 − e(x)

)−1

,

Proof: See Appendix.

Corollary 6.2 Suppose Assumptions – hold, and that σ2
0(x) = σ2

1(x) = σ2 for all x. Then the
Optimally Weighted Average Treatment Effect (OWATE) is τg∗, where

g∗(x) = e(x) · (1 − e(x)).
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7 Some Illustrations Based on Real Data

In this section, we apply the methods developed in this paper to data from a set of manpower
training programs. We first calculate the optimal cutoff point α based on an estimate of the
propensity score. We report the number of observations discarded by the proposed sample
selection. We also report the asymptotic variance for five alternative estimands relative to that
for the average treatment effect for the full sample. These five estimands include the average
effect for the controls, the average effect for the treated, the OSATE, the OWATE, and the
average effect for those with a propensity score between 0.1 and 0.9. The latter is assess the
sensitivity to the choice of cutoff values for the propensity score.

7.1 The Lalonde Data

The data set we use was originally analyzed by Lalonde (1986) and subsequently by Dehejia
and Wahba (1999) and Smith and Todd (2004). In particular, the particular samples we yse are
the ones used in Dehejia and Wahba. The treatment of interest is a job training program. The
data for trainees are drawn from an experimental evaluation of this program. Rather than using
the randomly assigned control group from this evaluation, we analyze data for a (non-randomly
assigned) control group taken from the Panel Study of Income Dynamics (PSID). These control
and treatment groups are very unbalanced.

Table 1 presents some summary statistics for these data. The fourth and fifth column
present the averages for each of the covariates separately for the comparison and treatment
groups. Consider, for example, the average earnings of sample members in the year prior to
the program, earn ’75. For the control group from the PSID this, the mean of this variable is
19.06, in thousands of dollars. For the treatment group, it is only 1.53. Given that the standard
deviation is 13.88, this is a very large difference of 1.26 standard deviations, suggesting that
simple covariance adjustments are unlikely to lead to credible inferences.

Using these two samples, we estimate the propensity score of program participation using a
logistic model with all nine covariates entering linearly. We then use the estimated propensity
score to calculate the optimal cutoff point, α in the homoskedasticity case. The optimal cutoff
point is α = 0.0660. Based on this cutoff point, the number of observations that should be
discarded according is substantial. Out of the original 2675 observations (2490 controls and 185
treated), only 312 are left (183 controls and 129 treated). In Table 3, we present the number
of observations in the various categories.

Table 2 presents the asymptotic standard errors for the four estimands. The first is the stan-
dard error for the population average treatment effect (ATE). The second is the asymptotic
standard error for the average treatment effect for the treated (ATT). The third is the asymp-
totic standard error for the average treatment effect in the subpopulation with α < e(x) < 1−α,
for the optimal value of α = 0.0660 (OSATE), while the fourth is the standard error for the
optimally weighted average treatment effect (OWATE).

The second row in Table 2 shows the ratios of the asymptotic standard error to the asymp-
totic standard error for the population average treatment effect. There is a huge gain in precision
in moving from the population average treatment effect to any of the three other estimands.
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This gain is due to the huge differences between the treated and control covariate distributions.
As a result of these differences, there are large areas in the covariate space where there are
essentially no treated units. Hence, estimating the average treatment effects in those regions of
the covariate space is difficult, and can only be done with great imprecision, even under the as-
sumptions made. This finding has been noted by others (see Dehejia and Wahba, 19999) for this
particular data set. What the previous investigations based on this data set have not noticed,
however, is the fact that there is still a large difference in asymptotic standard errors between
the three other estimands. The asymptotic standard error for the average effect for the treated
is much larger than for the OSATE estimator (2.58 versus 1.62) which, in turn is substantially
larger than the standard error for the OWATE estimator (1.62 versuss 1.28). Overall, this
particular example provides a nice illustration of the potential benefits, at least with respect to
precision, of optimally choosing one’s estimand when estimating treatment effects.

8 Conclusion
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Appendix

Proof of Theorem 4.2: Suppose we have an estimator τ̃ for τC that asymptotically linear with influence
function φ(Y,W,X), so that

τ̃ − 1
N

N∑

i=1

τ (Xi) =
1
N

N∑

i=1

φ(Yi,Wi, Xi) + op

(
N−1/2

)
.

The Hahn estimator τ̂H satisfies

τ̂ − 1
N

N∑

i=1

τ (Xi) =
1
N

N∑

i=1

ψ(Yi,Wi, Xi) + op

(
N−1/2

)
,

where

ψ(y, w,w) = φ(y, w, x)− τ (x) = w · y − µ1(x)
e(x)

− (1 −w) · y − µ0(x)
1 − e(x)

.

Note that E[ψ(Y,W,X)|X] = 0 so that E[ψ(Y,W,X) · (τ (X)−τP )] = 0. For τ̃ to be unbiased asymptoti-
cally it must be that E[φ(Y,W,X)|X = x] = 0 for all x, again implying that E[φ(Y,W,X)·(τ (X)−τP )] =
0.
For τ̃ to be more efficient than τ̂ as an estimator for τC it must be that E[φ(Y,W,X)2] < E[ψ(Y,W,X)2].
Because τ̂H is efficient for τP , it must be that E[(φ(Y,W,X)+τ (X)−τP )2] ≥ E[(ψ(Y,W,X)+τ (X)−τP )2].
Because E[φ(Y,W,X) · (τ (X) − τP )] = 0 and E[ψ(Y,W,X) · (τ (X) − τP )] = 0 this cannot both be true.
�
Proof of Theorem 4.4: The derivation of the efficiency bound follows that of Hahn (1998). The
density of (Y (0), Y (1), T,X) with respect to some σ-finite measure is

q(y(0), y(1), t, x) = f(y(0), y(1)|t, x)f(t|x)f(x)
= f(y(0), y(1)|x)f(t|x)f(x)
= f(y(0), y(1)|x)p(x)t(1 − p(x))1−tf(x)

The density of the observed data (y, t, x), using the unconfoundedness assumption, is

q(y, t, x) = [f1(y|x)p(x)]t[f0(y|x)(1 − p(x))]1−tf(x),

where ft(y|x) = fY (T )|X(y(t)|x) =
∫
f(y(1 − t), y|x)dy(1 − t). Consider a regular parametric submodel

indexed by θ, with density

q(y, t, x) = [f1(y|x, θ)p(x, θ)]t[f0(y|x, θ)(1 − p(x, θ))]1−tf(x, θ),

which is equal to the true density q(y, t, x) for θ = θ0. The score is given by

d

dθ
ln q(y, t, x|θ) = s(y, t, x|θ) = t · s1(y|x, θ) + (1− t) · s0(y|x, θ) + sx(x, θ) +

t− p(x)
p(x)(1 − p(x))

· p′(x, θ)

where

s1(y|x, θ) =
d

dθ
ln f1(y|x, θ)

s0(y|x, θ) =
d

dθ
ln f0(y|x, θ)

sx(x|θ) =
d

dθ
ln f(x, θ)

p′(x, θ) =
d

dθ
p(x, θ)
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The tangent space of the model is the set of functions

T = {t · s1(y, x) + (1 − t) · s0(y, x) + sx(x) + a(x) · (t − p(x))}

where a(x) is any square-integrable measurable function of x and s1, s0, and sx satisfy
∫
s1(y, x)f1(y|x)dy = E[s1(Y (1), X)|X = x] = 0, ∀x,

∫
s0(y, x)f0(y|x)dy = E[s0(Y (0), X)|X = x] = 0, ∀x,

∫
sx(x)f(x)dx = E[sx(X)] = 0.

The parameter of interest is

τh =
∫∫

h(p(x))yf1(y|x)f(x)dydx −
∫∫

h(p(x))yf0(y|x)f(x)dydx∫
h(p(x))f(x)dx

.

Thus, for the parametric submodel indexed by θ, the parameter of interest is

τh(θ) =
∫∫

h(p(x, θ))yf1(y|x, θ)f(x, θ)dydx −
∫∫

h(p(x, θ))yf0(y|x, θ)f(x, θ)dydx∫
h(p(x, θ))f(x, θ)dx

.

We need to find a function Fτh(y, t, x) such that for all regular parametric submodels,

∂τh(θ0)
∂θ

= E[Fτh(Y, T,X) · s(Y, T,X|θ0)].

First, we will calculate ∂τh(θ0)
∂θ . Let µh =

∫
h(p(x))f(x)dx. Then,

∂τh(θ0)
∂θ

=
1
µh

[∫∫
h(p(x, θ0))y [s1(y|x, θ0)f1(y|x, θ0) − s0(y|x, θ0)f0(y|x, θ0)] f(x, θ0)dydx

+
∫
h(p(x, θ0)) [τ (x) − τh] sx(x|θ0)f(x, θ0)dx

+
∫
h′(p(x, θ0))p′(x, θ0) [τ (x) − τh] f(x, θ0)dx

]

where h′(p(x)) = d
dp(x)h(p(x)). The following choice for Fτh satisfies the condition:

Fτh(Y, T,X) =
T · h(p(X))
µh · p(X)

(Y − E[Y (1)|X]) − (1 − T ) · h(p(X))
µh · (1 − p(X))

(Y − E[Y (0)|X])

+
h(p(X))
µh

(τ (X) − τh) +
(T − p(X)) · h′(p(X))

µh
(τ (X) − τh).
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To see this consider the following product,

Fτh(Y, T,X) · s(Y, T,X|θ0)

=
T 2 · h(p(X))
µh · p(X)

s1(Y,X)(Y − E[Y (1)|X]) (A.1)

+ 0 (A.2)

+
T · h(p(X))
µh · p(X)

sx(X)(Y − E[Y (1)|X]) (A.3)

+
T (T − p(X)) · h(p(X))
µh · p(X)2(1 − p(X))

p′(X)(Y − E[Y (1)|X]) (A.4)

− 0 (A.5)

− (1 − T )2 · h(p(X))
µh · (1 − p(X))

s0(Y,X)(Y − E[Y (0)|X]) (A.6)

− (1 − T ) · h(p(X))
µh · (1 − p(X))

sx(X)(Y − E[Y (0)|X]) (A.7)

− (1 − T ) · (T − p(X)) · h(p(X))
µh · p(X)(1 − p(X))2

p′(X)(Y − E[Y (0)|X]) (A.8)

+
T · h(p(X))

µh
s1(Y,X)(τ (X) − τh) (A.9)

+
(1 − T ) · h(p(X))

µh
s0(Y,X)(τ (X) − τh) (A.10)

+
h(p(X))
µh

sx(X)(τ (X) − τh) (A.11)

+
(T − p(X)) · h(p(X))
µh · p(X)(1 − p(X))

p′(X)(τ (X) − τh) (A.12)

+
T (T − p(X)) · h′(p(x))

µh
s1(Y,X)(τ (X) − τh) (A.13)

+
(1 − T )(T − p(X)) · h′(p(x))

µh
s0(Y,X)(τ (X) − τh) (A.14)

+
(T − p(X)) · h′(p(x))

µh
sx(X)(τ (X) − τh) (A.15)

+
(T − p(X))2 · h′(p(x))
µh · p(X)(1 − p(X))

p′(X)(τ (X) − τh). (A.16)
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Consider each expectation in turn. Equation (1) yields,

E
[
T 2 · h(p(X))
µh · p(X)

s1(Y,X)(Y − E[Y (1)|X])
]

= E
[
T · h(p(X))
µh · p(X)

s1(Y (1), X)Y (1)
]
− E

[
T · h(p(X))
µh · p(X)

s1(Y (1), X)E[Y (1)|X]
]

= E
[
h(p(X))
µh · p(X)

E[T · s1(Y (1), X)Y (1)|X]
]

−E
[
h(p(X))
µh · p(X)

E[T · s1(Y (1), X)|X] · E[Y (1)|X]
]

= E
[
h(p(X))
µh

E[s1(Y (1), X)Y (1)|X]
]
− E

[
h(p(X))
µh

E[s1(Y (1), X)|X] ·E[Y (1)|X]
]

= E
[
h(p(X))
µh

E[s1(Y (1), X)Y (1)|X]
]

=
1
µh

∫∫
h(p(x))ys1(y, x)f1(y|x)f(x)dydx.

Equation (3) yields,

E
[
T · h(p(X))
µh · p(X)

sx(X)(Y − E[Y (1)|X])
]

= E
[
T · h(p(X))
µh · p(X)

sx(X)Y (1)
]
− E

[
T · h(p(X))
µh · p(X)

sx(X)E[Y (1)|X]
]

= E
[
h(p(X))
µh · p(X)

sx(X)E[TY (1)|X]
]
− E

[
h(p(X))
µh

sx(X)E[Y (1)|X]
]

= E
[
h(p(X))
µh

sx(X)E[Y (1)|X]
]
− E

[
h(p(X))
µh

sx(X)E[Y (1)|X]
]

= 0.

Equation (4) yields,

E
[
T (T − p(X)) · h(p(X))
µh · p(X)2(1 − p(X))

p′(X)(Y − E[Y (1)|X])
]

= E
[
T (T − p(X)) · h(p(X))
µh · p(X)2(1 − p(X))

p′(X)(Y (1) − E[Y (1)|X])
]

= E
[

h(p(X))
µh · p(X)2(1 − p(X))

p′(X)E[T (T − p(X))Y (1)|X]
]

−E
[

h(p(X))
µh · p(X)2(1 − p(X))

p′(X)E[T (T − p(X))|X] · E[Y (1)|X]
]

= E
[
h(p(X))
µh · p(X)

p′(X)E[Y (1)|X]
]
− E

[
h(p(X))
µh · p(X)

p′(X)E[Y (1)|X]
]

= 0.
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Equation (6) yields,

−E
[
(1 − T )2 · h(p(X))
µh · (1 − p(X))

s0(Y,X)(Y − E[Y (0)|X])
]

= −E
[
(1 − T ) · h(p(X))
µh · (1 − p(X))

s0(Y (0), X)Y (0)
]

+E
[
(1 − T ) · h(p(X))
µh · (1 − p(X))

s0(Y (0), X)E[Y (0)|X]
]

= −E
[

h(p(X))
µh · (1 − p(X))

E[(1− T )s0(Y (0), X)Y (0)|X]
]

+E
[

h(p(X))
µh · (1 − p(X))

E[(1− T )s0(Y (0), X)|X]E[Y (0)|X]
]

= −E
[
h(p(X))
µh

E[s0(Y (0), X)Y (0)|X]
]

+ E
[
h(p(X))
µh

E[s0(Y (0), X)|X]E[Y (0)|X]
]

= −E
[
h(p(X))
µh

E[s0(Y (0), X)Y (0)|X]
]

= − 1
µh

∫∫
h(p(x))ys0(y, x)f0(y|x)f(x)dydx.

Equation (7) yields,

−E
[
(1 − T ) · h(p(X))
µh · (1 − p(X))

sx(X)(Y − E[Y (0)|X])
]

= −E
[
(1 − T ) · h(p(X))
µh · (1 − p(X))

sx(X)Y (0)
]

+ E
[
(1 − T ) · h(p(X))
µh · (1 − p(X))

sx(X)E[Y (0)|X]
]

= −E
[

h(p(X))
µh · (1 − p(X))

sx(X)E[(1 − T )Y (0)|X]
]

+ E
[
h(p(X))
µh

sx(X)E[Y (0)|X]
]

= −E
[
h(p(X))
µh

sx(X)E[Y (0)|X]
]

+ E
[
h(p(X))
µh

sx(X)E[Y (0)|X]
]

= 0

Equation (8) yields,

−E
[
(1 − T ) · (T − p(X)) · h(p(X))

µh · p(X)(1 − p(X))2
p′(X)(Y − E[Y (0)|X])

]

= −E
[
(1 − T ) · (T − p(X)) · h(p(X))

µh · p(X)(1 − p(X))2
p′(X)(Y (0) − E[Y (0)|X])

]

= −E
[

h(p(X))
µh · p(X)(1 − p(X))2

p′(X)E[(1 − T )(T − p(X))Y (0)|X]
]

+E
[

h(p(X))
µh · p(X)(1 − p(X))2

p′(X)E[(1 − T )(T − p(X))|X]E[Y (0)|X]
]

= −E
[

h(p(X))
µh · (1 − p(X))

p′(X)E[Y (0)|X]
]

+ E
[

h(p(X))
µh · (1 − p(X)))

p′(X)E[Y (0)|X]
]

= 0.
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Equation (9) yields,

E
[
T · h(p(X))

µh
s1(Y,X)(τ (X) − τh)

]

= E
[
T · h(p(X))

µh
s1(Y (1), X)(τ (X) − τh)

]

= E
[
h(p(X))
µh

E[Ts1(Y (1), X)|X](τ (X) − τh)
]

= E
[
p(X) · h(p(X))

µh
E[s1(Y (1), X)|X](τ (X) − τh)

]

= 0.

Equation (10) yields,

E
[
(1 − T ) · h(p(X))

µh
s0(Y,X)(τ (X) − τh)

]

= E
[
(1 − T ) · h(p(X))

µh
s0(Y (0), X)(τ (X) − τh)

]

= E
[
h(p(X))
µh

E[(1 − T )s0(Y (0), X)|X](τ (X) − τh)
]

= E
[
(1 − p(X)) · h(p(X))

µh
E[s0(Y (0), X)|X](τ (X) − τh)

]

= 0.

Equation (11) yields,

E
[
h(p(X))
µh

sx(X)(τ (X) − τh)
]

=
1
µh

∫
h(p(x))(τ (x) − τh)sx(x)f(x)dx

Equation (12) yields,

E
[
(T − p(X)) · h(p(X))
µh · p(X)(1 − p(X))

p′(X)(τ (X) − τh)
]

= E
[

E[(T − p(X))|X] · h(p(X))
µh · p(X)(1 − p(X))

p′(X)(τ (X) − τh)
]

= 0.

Equation (13) yields,

E
[
T (T − p(X)) · h′(p(X))

µh
s1(Y,X)(τ (X) − τh)

]

= E
[
T (T − p(X)) · h′(p(X))

µh
s1(Y (1), X)(τ (X) − τh)

]

= E
[
h′(p(X))

µh
E[T (T − p(X))s1(Y (1), X)|X](τ (X) − τh)

]

= E
[
p(X)(1 − p(X)) · h′(p(X))

µh
E[s1(Y (1), X)|X](τ (X) − τh)

]

= 0.
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Equation (14) yields,

E
[
(1 − T )(T − p(X)) · h′(p(X))

µh
s0(Y,X)(τ (X) − τh)

]

= E
[
(1 − T )(T − p(X)) · h′(p(X))

µh
s0(Y (0), X)(τ (X) − τh)

]

= E
[
h′(p(X))

µh
E[(1− T )(T − p(X))s0(Y (0), X)|X](τ (X) − τh)

]

= E
[
p(X)(1 − p(X)) · h′(p(X))

µh
E[s0(Y (0), X)|X](τ (X) − τh)

]

= 0.

Equation (15) yields,

E
[
(T − p(X)) · h′(p(X))

µh
sx(X)(τ (X) − τh)

]

= E
[

E[(T − p(X))|X] · h′(p(X))
µh

sx(X)(τ (X) − τh)
]

= 0.

Equation (16) yields,

E
[
(T − p(X))2 · h′(p(X))
µh · p(X)(1 − p(X))

p′(X)(τ (X) − τh)
]

= E
[
(T 2 + p(X)2 − 2 · Tp(X)) · h′(p(X))

µh · p(X)(1 − p(X))
p′(X)(τ (X) − τh)

]

= E
[

E[T + p(X)2 − 2 · Tp(X)|X] · h′(p(X))
µh · p(X)(1 − p(X))

p′(X)(τ (X) − τh)
]

= E
[
p(X)(1 − p(X) · h′(p(X))
µh · p(X)(1 − p(X))

p′(X)(τ (X) − τh)
]

= E
[
h′(p(X))

µh
p′(X)(τ (X) − τh)

]

=
1
µh

∫
h′(p(x))p′(x)[τ (x) − τh]f(x)dx

Since Fτh ∈ T , the variance bound is

E[Fτh(Y, T,X)2] = E
[

[h(p(X))]2

(µh)2 · p(X)
· V[Y (1)|X]

]
+ E

[
[h(p(X))]2

(µh)2 · (1 − p(X))
·V[Y (0)|X]

]

+E
[
[h(p(X)) + (T − p(X)) · h′(p(X))]2

(µh)2
(τ (X) − τh)2

]

= E
[

[h(p(X))]2

(µh)2 · p(X)
· V[Y (1)|X]

]
+ E

[
[h(p(X))]2

(µh)2 · (1 − p(X))
·V[Y (0)|X]

]

+E
[
[h(p(X))]2 + p(X)(1 − p(X)) · [h′(p(X))]2

(µh)2
(τ (X) − τh)2

]

For the special case of h(p(x)) = p(x) the semiparametric efficiency bound is,

E
[
p(X)
(µh)2

· V[Y (1)|X]
]

+ E
[

p(X))2

(µh)2 · (1 − p(X))
· V[Y (0)|X]

]
+ E

[
p(X)
(µh)2

(τ (X) − τh)2
]
.
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For the special case of h(p(x)) = p(x)(1 − p(x)) the semiparametric efficiency bound is,

E
[
p(X)(1 − p(X))2

(µh)2
· V[Y (1)|X]

]
+ E

[
p(X)2(1 − p(X))

(µh)2
·V[Y (0)|X]

]

+E
[
p(X)2(1 − p(X))2 + p(X)(1 − p(X)) · (1 − 2 · p(X))2

(µh)2
(τ (X) − τh)2

]

which simplifies to

E
[
p(X)(1 − p(X))2

(µh)2
· V[Y (1)|X]

]
+ E

[
p(X)2(1 − p(X))

(µh)2
·V[Y (0)|X]

]

+E
[
p(X)(1 − p(X))(3p(X)2 − 3p(X) + 1)

(µh)2
(τ (X) − τh)2

]
.
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Table 1: Covariate Balance for Lalonde Data

mean stand. mean Normalized Dif. in Treat. and Contr. Ave’s
dev. contr. treat. all [t-stat] a < e(x) optimal prop score

< 1 − a weights weighted

age 34.23 10.50 34.85 25.82 -0.86 [-16.0] -0.18 -0.25 -0.35
educ 11.99 3.05 12.12 10.35 -0.58 [-11.1] -0.04 -0.08 -0.12
black 0.29 0.45 0.25 0.84 1.30 [21.0] 0.20 0.27 0.37
hispanic 0.03 0.18 0.03 0.06 0.15 [1.5] 0.07 -0.01 -0.08
married 0.82 0.38 0.87 0.19 -1.76 [-22.8] -0.81 -0.79 -0.70
unempl ’74 0.13 0.34 0.09 0.71 1.85 [18.3] 0.78 0.78 1.19
uenmpl ’75 0.13 0.34 0.10 0.60 1.46 [13.7] 0.51 0.47 0.90
earn ’74 18.23 13.72 19.43 2.10 -1.26 [-38.6] -0.20 -0.23 -0.26
earn ’75 17.85 13.88 19.06 1.53 -1.26 [-48.6] -0.14 -0.18 -0.18

log odds ratio -7.87 4.91 -8.53 1.08 1.96 [53.6] 0.42 0.48 0.57

[28]



Table 2: Asymptotic Standard Errors for Lalonde Data

ATE ATT OSATE OWATE

Asymptotic Standard Error 636.58 2.58 1.62 1.29
Ratio to All 1.0000 0.0040 0.0025 0.0020

Table 3: Subsample Sizes for Lalonde Data: Propensity Score Threshold 0.0660

e(x) < a a ≤ e(x) ≤ 1 − a 1 − a < e(x) all

controls 2302 183 5 2490
treated 9 129 47 185
all 2311 312 52 2675
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